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This note is an erratum to the paper “Existence of an unbounded nodal
hypersurface for smooth Gaussian fields in dimension d > 3” (Annals of
Probability 51(1): 228-276 (January 2023). DOI: 10.1214/22-A0OP1594).
The published version of this paper contains one error: Proposition 1.12
therein is stated with a sprinkling R=2%% for some (small) g > 0, which
we cannot afford in Section 5, where this result is applied at mesoscopic
scales. We circumvent this issue by proving a stronger version of this propo-
sition, interesting in its own right, which contains no sprinkling. We thus ob-
tain that, for a general class of positively correlated smooth Gaussian fields
f: R3 - R with rapid decay of correlations (including the Bargmann—Fock
field), large planar clustersin { f > 0} N (R2 x {0}) typically belong to clus-
ters in { f > 0} which are not confined in thin slabs.

The published version of the manuscript [3] contains one error: Proposition 1.12 therein
is stated with a sprinkling R~2+% for some (small) 6y > 0, which we cannot afford in [3,
Section 5], where this result is applied at mesoscopic scales. The issue can be circumvented
by proving the following stronger version of [3, Proposition 1.12], interesting in its own right,
which contains no sprinkling. We use the same notations as in [3].

PROPOSITION 1. Let d > 3 and let q satisfy Assumption 1.4 for some 3 > d. There exist
a,7,c, Ry > 0 such that for every R > Ry, r € [rq, RY] and £ > 0,

Every continuous path in { f, > ¢} N D(2R)
P| from D(R) to 0D(2R) belongs to a connected component | > 1 — exp(—R°).
of {fr >4} N (D(2R) x [0, R%)) that intersects Pra

As a consequence of this improvement over [3, Proposition 1.12], the arguments in [3, Sec-
tions 5,6 and 8] can be somewhat streamlined (although they remain correct as they presently
are), by removing this sprinkling. In particular, this entails replacing the level “2R~3/2” by
“R~3/2” in various places, including in the statement of [3, Proposition 5.1], as well as in
[3, Definition 7.2, i) and ii)] and [3, Definition 8.2,1)]. Correspondingly, the sprinkling can be
removed from the whole discussion in [3, Section 1.3]. In particular, we obtain the following
uniqueness property, which improves over [3, (4)] (cf. also [3, Proposition 5.1]):

With high probability, for large R, any two components of
of {f >0} N[0, R)? with diameter > R/100
are connected by a path in {f >0} N ([0, R]? x [0, RY)).

We now explain how to prove Proposition 1 by modifying the proof of [3, Proposition
1.12]. This proof appears in [3, Section 3] and follows by combining three results, Lemmas
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3.2, 3.3 and 3.4. Of these, Lemmas 3.2 and 3.4 remain unchanged. Lemma 3.3 is replaced
by the following result. Below the events E,(R) refer to those declared in [3, Definition 3.1]
(the events E ¢ (R) won’t be needed anymore).

LEMMA 2. There exists n > 0 that depends only on the dimension d such that we have
the following as soon as v, a and 1 — b are less than n: There exist ¢, Ry > 0 such that for
every { >0, R> Ry and r € [rq, R"], there exists {' € R such that

Pfr € B(R)] < minP[f. € By (R)] + R™

In fact, we prove this result with ¢’ € [¢, ¢ + C'R~¢| for some C, ¢ > 0. We give the proof of
Lemma 2 separately below and first conclude the proof of Proposition 1 admitting Lemma 2
and combining with [3, Lemma 3.2+3.4].

PROOF OF PROPOSITION 1. Let us start by observing that Lemma 2 and [3, Lemma 3.4]
(applied to the level ¢ from Lemma 2) and Item 1 of [3, Lemma 3.2] imply that there exist
7v,a,¢€,c, Ry > 0 such that, for every R > Ry, r € [ry, R’ and £ > 0,

) P[fr € By(R"F)] <R

We now implement a fairly classical renormalization argument. Introduce the event Fy(R, T)
as Ey(R) except that the height is 7 instead of R*. Let

p(’r’ T, R) = P[f?” S EZ(R’ 7—)]
We now claim that there exists C' > 0 such that for every L > R,
p(r,7,7L) < (Cp(r,7,L))*.

To see this, one can proceed as follows: First, due to independence at distance L, one bounds
p(r,7,7L) by the square of the analogous quantity for a (21L x 3L)-rectangle. Now, one
covers each (21L x 3L)-rectangle using 40 + 21 (3L x L) rectangles and observes that at
least one is crossed in the easy direction with a crossing that does not go up to height 7, thus
implying the above with C' =40 + 21.

By iterating this argument, we obtain that

p(r, T, 7kL) < C’2+22+"'+2kp(7", T,L)Zk < (C2p(r, T,L))2k.
We now fix 7 = R*17¢) and L = Rl~=. Also, we choose k so that %Re < 7% < R* and set
R="7FR'"¢ ¢ [R/7,R)]. Using (1), we may find Ry, ¢ > 0 such that for R > Ry,
p(r, R*1=4) R) < (C?R~)* < exp(—R").

It only remains to observe that for the event in the statement of Proposition 1 to occur (with
2R instead of R), there must be one out of O(1) rectangles of size 3R x R that are crossed
by a path which is not in a connected component connected to the top. The claim therefore
follows by a union bound. O

It remains to give the proof of Lemma 2. We make frequent reference to [3, Section 3.3].
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Proof of Lemma 2. The beginning of the proof is the same as the beginning of [3, Sec-
tion 3.3] until “...(to prove this, compute the covariance of these Gaussian fields and use the
change of variables u = G (y)).” see the sentence below the display following [3, (7)]. Then
the proof continues as follows.

Hence, in order to prove the lemma, it is sufficient to prove that (for v, a and 1 — b suf-
ficiently small) there exist ¢, Ry > 0 such that for any R > R and r € [rq, R7], there exists
¢ € R such that
@) Pl € B(R)] < minPlhg € B(R)]+ R,

Let us now introduce some stability events for percolation clusters, that will enable us to
overcome the fact that stability results such as [3, Lemma B.2] cannot be applied to Fy(R)
(because this event is not a union/intersection of a small number of monotonic events).

If ¢ < ¢ are two levels, we let Stab ¢ (R) denote the event defined as follows (note that
this event only depends on the function restricted to the rectangle [0,3R] x [0, R] C R? =
R? x {0}972): a function u € C(R?) belongs to Staby ¢ (R) if every connected component of
{u>1¢}N([0,3R] x [0, R]) that contains a continuous path from [0,3R] x {0} to [0,3R] x
{R} also contains such a path + with the further property that u, > ¢'.

Let us now make the following observation: For every § > 0 and every u,v € C(R?), at
least one of the following properties does not hold:

. UEEg(R);

° uEStabg,g+25(R);

* Jlu—vllo,j0,3R)x@x {0}1-3 < 5
s v¢ Eyys

As aresult, for every 6 > 0 we have

Plfr € E¢(R)] < minP[hy" € By5(R)]

[e1S
+ Iélgj(]?[ﬂfr — " lloo 0.38]x@x{0}-2 = 6] + P[f ¢ Staby e 05(R)].

We thus obtain that Lemma 2 is a consequence of the following two lemmas:

LEMMA 3. Fix some € € (0,1). There exists a constant 6 > 0 that depends only on ¢
such that the following holds as soon as v <1 — e: There exists Ry > 0 such that for every
(>0, R>Rgpandr € [ry, R"],

P[fr ¢ Stabg,gﬂs(R)] < R—G’

where § := R~210,

LEMMA 4. Forevery 0 > 0, there exists n > 0 (that depends only on 6 and on the dimen-
sion d) such that the following holds as soon as v, a and 1 — b are less than n: There exist
¢, Ro > 0 such that for every R > Ry and r € [rq, R"],

gleaj(P[Hfr — W lloo,0,3R)x@x {0ye-2 = R72T] <exp(—R°).

Although not stated as such, Lemma 4 is proved in [3, Section 3.3]: see [3, (8)] (in partic-
ular, the proof uses [3, Claim 3.7], which remains valid).



PROOF OF LEMMA 3. In this proof, we use the notion of stratified gradient of some func-
tion u € C%(R?) with respect to the rectangle [0,3R] x [0, R]. The stratified gradient Viu
is defined as the usual (2-dimensional) gradient if = does not belong to the boundary of the
rectangle; it is defined as the one-dimensional gradient V (u 1) if « belongs to some side L
of the rectangle excluding corners, and V2w := 0 if x is a corner of the rectangle.

Letd > 0.

CLAIM 1. Assume that f, ¢ Staby s, 5(R). Then, there exist a connected component C
of {fr > ¢} N ([0,3R] x [0, R]) and a point x € C such that:

* C contains a continuous path from By := [0,3R] x {0} to T := [0,3R] x {R};
o frlx) €6, 0+ 6] and V3 f, = 0.

PROOF. Let K denote the union of all connected components of {f. > ¢} N ([0,3R] x
[0, R]) that contain a continuous path from Tx to Bg. Our aim is to prove the following
claim: Assume that there is no = € K such that VZf, =0 and f.(z) € [¢,£ 4 J]. Then,
every connected component of K contains a continuous path v from T to Bg such that
fely =L +56.

Let us prove this claim. To this purpose, let K*© (resp. K°) denote the open (resp. closed)
e-neighborhood of K. We fix some & > 0 such that (f)|x2-\x < ¢ and, by using smooth
Urysohn’s lemma (applied to the compact set (/2%)¢ included in the open set (K°)¢, both
seen as subsets of [0,3R)] x [0, R]), we construct a function f, € C2(R?) such that

. @)ms = (fr)|k- and
¢ (fv')|KC <.

We note that that there is no z € [0, 3R] x [0, R] such that f,.(z) € [¢,£4 6] and V5 f, =0, and
we apply a result from stratified Morse theory to f?« as follows: By [4, Proposition in Section
3.2 of Part I], there exists a homeomorphism ¢ from K = {f, > ¢} N ([0,3R] x [0, R])
to L:={f, >+ 6} n([0,3R] x [0,R]) such that both ¢ and ¢! send a point of Br
(resp. Tr) on a point of Bp (resp. Tr). The existence of a homeomorphism between K
and L implies that the number of connected components of L is the same as the number
of connected components of K. Since every connected component of L is included in a
connected component of K, we obtain that every connected component of K contains a
component of L. Moreover, the property of ¢ implies that every component of L contains a
path from Bpg to Tg. This concludes the proof of the desired result for f,., which implies the
desired result for f,. O

Let us now tile the rectangle [0,3R] x [0, R] with < R? unit squares S; and let us note
that, for every h > 0, there exists C';, > 0 that depends only on A and ¢ such that

(3) Vi, P[Ere€S;,Vif=0and f(z)€[(,(+ 5] <Cpo'™"

This is for instance written at the end of the proof of [5, Lemma 7] (applied to m = 2,
B =1,7=0and t = h/3 - let us note that the fact that the constant C}, above — of which the
reader can find an expression in [5] — is uniform in r is a consequence of classical Gaussian
estimates such as Dudley’s theorem and the BTIS inequality, both applied to the Gaussian

ﬁeld (fr(x)7 v;fﬁ (Vs)ifr)xesf,e see [1’ 2])
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Let us end the proof by using (3) as well as the RSW theorem — [3, Theorem 2.4] (the use
of the RSW theorem here is the only reason why Lemma 3 and Proposition 1 are stated for
levels ¢ > 0). By the RSW theorem and the independence between sets at distance greater
than r, there exists a constant ¢ > 0 that depends only on ¢ such that, if v <1 — ¢ and
T € [rg, R7], we have

(4) Vi, P[Jacont. pathin {f, > ¢} from S to Tx and such a path from S to Bg|
<R,

where ST is the set of all points in R? at distance less than r from S;.

Let 0 = R~2%9 as in the statement of the lemma. By using (3), (4) and the independence
between sets at distance greater than r, we have

Vi, P[3z € S;asinClaim 1] < Cpot"R¢ = ¢, R-ZH)A-h)—c

Choosing for instance h = 6 = ¢/1000 and summing over i imply the desired result. O
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