ERRATUM: "EXISTENCE OF AN UNBOUNDED NODAL HYPERSURFACE FOR SMOOTH GAUSSIAN FIELDS IN DIMENSION $D \geq 3$ "

By Hugo Duminil-Copin ${ }^{1, \mathrm{a}}$, Alejandro Rivera ${ }^{2, \mathrm{~b}}$, Pierre-François Rodriguez ${ }^{3, \mathrm{c}}$ and Hugo Vanneuville ${ }^{4, \mathrm{~d}}$
${ }^{1}$ Institut des Hautes Études Scientifiques and Université de Genève, ${ }^{\text {a }}$ duminil@ihes.fr
${ }^{2}$ École Polytechnique Fédérale de Lausanne, ${ }^{\mathrm{b}}$ alejandro.rivera@epfl.ch
${ }^{3}$ Imperial College London, ${ }^{\text {c }}$ p.rodriguez@imperial.ac.uk
${ }^{4}$ CNRS and Université Grenoble Alpes, ${ }^{\mathrm{d}}$ hugo.vanneuville@ univ-grenoble-alpes.fr

Abstract

This note is an erratum to the paper "Existence of an unbounded nodal hypersurface for smooth Gaussian fields in dimension $d \geq 3$ " (Annals of Probability 51(1): 228-276 (January 2023). DOI: 10.1214/22-AOP1594). The published version of this paper contains one error: Proposition 1.12 therein is stated with a sprinkling $R^{-2+\theta_{0}}$ for some (small) $\theta_{0}>0$, which we cannot afford in Section 5, where this result is applied at mesoscopic scales. We circumvent this issue by proving a stronger version of this proposition, interesting in its own right, which contains no sprinkling. We thus obtain that, for a general class of positively correlated smooth Gaussian fields $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ with rapid decay of correlations (including the Bargmann-Fock field), large planar clusters in $\{f \geq 0\} \cap\left(\mathbb{R}^{2} \times\{0\}\right)$ typically belong to clusters in $\{f \geq 0\}$ which are not confined in thin slabs.

The published version of the manuscript [3] contains one error: Proposition 1.12 therein is stated with a sprinkling $R^{-2+\theta_{0}}$ for some (small) $\theta_{0}>0$, which we cannot afford in [3, Section 5], where this result is applied at mesoscopic scales. The issue can be circumvented by proving the following stronger version of [3, Proposition 1.12], interesting in its own right, which contains no sprinkling. We use the same notations as in [3].

Proposition 1. Let $d \geq 3$ and let q satisfy Assumption 1.4 for some $\beta>d$. There exist a, $\gamma, c, R_{0}>0$ such that for every $R \geq R_{0}, r \in\left[r_{q}, R^{\gamma}\right]$ and $\ell \geq 0$,

$$
\mathbb{P}\left[\begin{array}{c}
\text { Every continuous path in }\left\{f_{r} \geq \ell\right\} \cap D(2 R) \\
\text { from } D(R) \text { to } \partial D(2 R) \text { belongs to a connected component } \\
\text { of }\left\{f_{r} \geq \ell\right\} \cap\left(D(2 R) \times\left[0, R^{a}\right]\right) \text { that intersects } \mathcal{P}_{R^{a}}
\end{array}\right] \geq 1-\exp \left(-R^{c}\right) .
$$

As a consequence of this improvement over [3, Proposition 1.12], the arguments in [3, Sections 5,6 and 8] can be somewhat streamlined (although they remain correct as they presently are), by removing this sprinkling. In particular, this entails replacing the level " $2 R^{-3 / 2}$ " by " $R^{-3 / 2}$ " in various places, including in the statement of [3, Proposition 5.1], as well as in [3, Definition 7.2, i) and ii)] and [3, Definition 8.2,i)]. Correspondingly, the sprinkling can be removed from the whole discussion in [3, Section 1.3]. In particular, we obtain the following uniqueness property, which improves over [3, (4)] (cf. also [3, Proposition 5.1]):

With high probability, for large R, any two components of of $\{f \geq 0\} \cap[0, R]^{2}$ with diameter $\geq R / 100$
are connected by a path in $\{f \geq 0\} \cap\left([0, R]^{2} \times\left[0, R^{a}\right]\right)$.
We now explain how to prove Proposition 1 by modifying the proof of [3, Proposition 1.12]. This proof appears in [3, Section 3] and follows by combining three results, Lemmas
3.2, 3.3 and 3.4. Of these, Lemmas 3.2 and 3.4 remain unchanged. Lemma 3.3 is replaced by the following result. Below the events $E_{\ell}(R)$ refer to those declared in [3, Definition 3.1] (the events $E_{\ell, \ell^{\prime}}(R)$ won't be needed anymore).

LEMMA 2. There exists $\eta>0$ that depends only on the dimension d such that we have the following as soon as γ, a and $1-b$ are less than η : There exist $c, R_{0}>0$ such that for every $\ell \geq 0, R \geq R_{0}$ and $r \in\left[r_{q}, R^{\gamma}\right]$, there exists $\ell^{\prime} \in \mathbb{R}$ such that

$$
\mathbb{P}\left[f_{r} \in E_{\ell}(R)\right] \leq \min _{\alpha \in A} \mathbb{P}\left[f_{r} \in E_{\ell^{\prime}}^{\alpha}(R)\right]+R^{-c}
$$

In fact, we prove this result with $\ell^{\prime} \in\left[\ell, \ell+C R^{-c}\right]$ for some $C, c>0$. We give the proof of Lemma 2 separately below and first conclude the proof of Proposition 1 admitting Lemma 2 and combining with [3, Lemma 3.2+3.4].

Proof of Proposition 1. Let us start by observing that Lemma 2 and [3, Lemma 3.4] (applied to the level ℓ^{\prime} from Lemma 2) and Item 1 of [3, Lemma 3.2] imply that there exist $\gamma, a, \varepsilon, c, R_{0}>0$ such that, for every $R \geq R_{0}, r \in\left[r_{q}, R^{\gamma}\right]$ and $\ell \geq 0$,

$$
\begin{equation*}
\mathbb{P}\left[f_{r} \in E_{\ell}\left(R^{1-\varepsilon}\right)\right] \leq R^{-c} \tag{1}
\end{equation*}
$$

We now implement a fairly classical renormalization argument. Introduce the event $E_{\ell}(R, \tau)$ as $E_{\ell}(R)$ except that the height is τ instead of R^{a}. Let

$$
p(r, \tau, R)=\mathbb{P}\left[f_{r} \in E_{\ell}(R, \tau)\right]
$$

We now claim that there exists $C>0$ such that for every $L \geq R^{\gamma}$,

$$
p(r, \tau, 7 L) \leq(C p(r, \tau, L))^{2}
$$

To see this, one can proceed as follows: First, due to independence at distance L, one bounds $p(r, \tau, 7 L)$ by the square of the analogous quantity for a $(21 L \times 3 L)$-rectangle. Now, one covers each $(21 L \times 3 L)$-rectangle using $40+21(3 L \times L)$ rectangles and observes that at least one is crossed in the easy direction with a crossing that does not go up to height τ, thus implying the above with $C=40+21$.

By iterating this argument, we obtain that

$$
p\left(r, \tau, 7^{k} L\right) \leq C^{2+2^{2}+\cdots+2^{k}} p(r, \tau, L)^{2^{k}} \leq\left(C^{2} p(r, \tau, L)\right)^{2^{k}}
$$

We now fix $\tau=R^{a(1-\varepsilon)}$ and $L=R^{1-\varepsilon}$. Also, we choose k so that $\frac{1}{7} R^{\varepsilon}<7^{k} \leq R^{\varepsilon}$ and set $\bar{R}=7^{k} R^{1-\varepsilon} \in[R / 7, R]$. Using (1), we may find $R_{1}, c^{\prime}>0$ such that for $R \geq R_{1}$,

$$
p\left(r, R^{a(1-\varepsilon)}, \bar{R}\right) \leq\left(C^{2} R^{-c}\right)^{2^{k}} \leq \exp \left(-R^{c^{\prime}}\right)
$$

It only remains to observe that for the event in the statement of Proposition 1 to occur (with $2 R$ instead of R), there must be one out of $O(1)$ rectangles of size $3 \bar{R} \times \bar{R}$ that are crossed by a path which is not in a connected component connected to the top. The claim therefore follows by a union bound.

It remains to give the proof of Lemma 2. We make frequent reference to [3, Section 3.3].

Proof of Lemma 2. The beginning of the proof is the same as the beginning of [3, Section 3.3] until "...(to prove this, compute the covariance of these Gaussian fields and use the change of variables $u=G_{\alpha}(y)$)." see the sentence below the display following [3, (7)]. Then the proof continues as follows.

Hence, in order to prove the lemma, it is sufficient to prove that (for γ, a and $1-b$ sufficiently small) there exist $c, R_{0}>0$ such that for any $R \geq R_{0}$ and $r \in\left[r_{q}, R^{\gamma}\right]$, there exists $\ell^{\prime} \in \mathbb{R}$ such that

$$
\begin{equation*}
\mathbb{P}\left[f_{r} \in E_{\ell}(R)\right] \leq \min _{\alpha \in A} \mathbb{P}\left[h_{r}^{\alpha} \in E_{\ell^{\prime}}(R)\right]+R^{-c} . \tag{2}
\end{equation*}
$$

Let us now introduce some stability events for percolation clusters, that will enable us to overcome the fact that stability results such as [3, Lemma B.2] cannot be applied to $E_{\ell}(R)$ (because this event is not a union/intersection of a small number of monotonic events).

If $\ell<\ell^{\prime}$ are two levels, we let $\operatorname{Stab}_{\ell, \ell^{\prime}}(R)$ denote the event defined as follows (note that this event only depends on the function restricted to the rectangle $[0,3 R] \times[0, R] \subset \mathbb{R}^{2}=$ $\left.\mathbb{R}^{2} \times\{0\}^{d-2}\right)$: a function $u \in C\left(\mathbb{R}^{d}\right)$ belongs to $\operatorname{Stab}_{\ell, \ell^{\prime}}(R)$ if every connected component of $\{u \geq \ell\} \cap([0,3 R] \times[0, R])$ that contains a continuous path from $[0,3 R] \times\{0\}$ to $[0,3 R] \times$ $\{R\}$ also contains such a path γ with the further property that $u_{\mid \gamma} \geq \ell^{\prime}$.

Let us now make the following observation: For every $\delta>0$ and every $u, v \in C\left(\mathbb{R}^{d}\right)$, at least one of the following properties does not hold:

- $u \in E_{\ell}(R)$;
- $u \in \operatorname{Stab}_{\ell, \ell+2 \delta}(R)$;
- $\|u-v\|_{\infty,[0,3 R] \times Q \times\{0\}^{d-3}} \leq \delta$;
- $v \notin E_{\ell+\delta}(R)$.

As a result, for every $\delta>0$ we have

$$
\begin{aligned}
\mathbb{P}\left[f_{r} \in E_{\ell}(R)\right] \leq & \min _{\alpha \in A} \mathbb{P}\left[h_{r}^{\alpha} \in E_{\ell+\delta}(R)\right] \\
& +\max _{\alpha \in A} \mathbb{P}\left[\left\|f_{r}-h_{r}^{\alpha}\right\|_{\left.\infty,[0,3 R] \times Q \times\{0\}^{d-3} \geq \delta\right]}+\mathbb{P}\left[f_{r} \notin \operatorname{Stab}_{\ell, \ell+2 \delta}(R)\right] .\right.
\end{aligned}
$$

We thus obtain that Lemma 2 is a consequence of the following two lemmas:
Lemma 3. Fix some $\varepsilon \in(0,1)$. There exists a constant $\theta>0$ that depends only on ε such that the following holds as soon as $\gamma<1-\varepsilon$: There exists $R_{0}>0$ such that for every $\ell \geq 0, R \geq R_{0}$ and $r \in\left[r_{q}, R^{\gamma}\right]$,

$$
\mathbb{P}\left[f_{r} \notin \operatorname{Stab}_{\ell, \ell+\delta}(R)\right] \leq R^{-\theta},
$$

where $\delta:=R^{-2+\theta}$.
Lemma 4. For every $\theta>0$, there exists $\eta>0$ (that depends only on θ and on the dimension d) such that the following holds as soon as γ, a and $1-b$ are less than η : There exist $c, R_{0}>0$ such that for every $R \geq R_{0}$ and $r \in\left[r_{q}, R^{\gamma}\right]$,

$$
\max _{\alpha \in A} \mathbb{P}\left[\left\|f_{r}-h_{r}^{\alpha}\right\|_{\infty,[0,3 R] \times Q \times\{0\}^{d-3}} \geq R^{-2+\theta}\right] \leq \exp \left(-R^{c}\right) .
$$

Although not stated as such, Lemma 4 is proved in [3, Section 3.3]: see [3, (8)] (in particular, the proof uses [3, Claim 3.7], which remains valid).

Proof of Lemma 3. In this proof, we use the notion of stratified gradient of some function $u \in C^{2}\left(\mathbb{R}^{2}\right)$ with respect to the rectangle $[0,3 R] \times[0, R]$. The stratified gradient $\nabla_{x}^{s} u$ is defined as the usual (2-dimensional) gradient if x does not belong to the boundary of the rectangle; it is defined as the one-dimensional gradient $\nabla_{x}\left(u_{\mid L}\right)$ if x belongs to some side L of the rectangle excluding corners, and $\nabla_{x}^{s} u:=0$ if x is a corner of the rectangle.

Let $\delta>0$.
Claim 1. Assume that $f_{r} \notin \operatorname{Stab}_{\ell, \ell+\delta}(R)$. Then, there exist a connected component C of $\left\{f_{r} \geq \ell\right\} \cap([0,3 R] \times[0, R])$ and a point $x \in C$ such that:

- C contains a continuous path from $B_{R}:=[0,3 R] \times\{0\}$ to $T_{R}:=[0,3 R] \times\{R\}$;
- $f_{r}(x) \in[\ell, \ell+\delta]$ and $\nabla_{x}^{s} f_{r}=0$.

Proof. Let K denote the union of all connected components of $\left\{f_{r} \geq \ell\right\} \cap([0,3 R] \times$ $[0, R])$ that contain a continuous path from T_{R} to B_{R}. Our aim is to prove the following claim: Assume that there is no $x \in K$ such that $\nabla_{x}^{s} f_{r}=0$ and $f_{r}(x) \in[\ell, \ell+\delta]$. Then, every connected component of K contains a continuous path γ from T_{R} to B_{R} such that $f_{r} \mid \gamma \geq \ell+\delta$.

Let us prove this claim. To this purpose, let K^{ε} (resp. \bar{K}^{ε}) denote the open (resp. closed) ε-neighborhood of K. We fix some $\varepsilon>0$ such that $\left(f_{r}\right)_{\mid K^{2 \epsilon} \backslash K}<\ell$ and, by using smooth Urysohn's lemma (applied to the compact set $\left(K^{2 \varepsilon}\right)^{c}$ included in the open set $\left(\bar{K}^{\varepsilon}\right)^{c}$, both seen as subsets of $[0,3 R] \times[0, R]$), we construct a function $\widetilde{f}_{r} \in C^{2}\left(\mathbb{R}^{2}\right)$ such that

- $\left(\widetilde{f}_{r}\right)_{\mid K^{\varepsilon}}=\left(f_{r}\right)_{\mid K^{\varepsilon}}$ and
- $\left(\widetilde{f}_{r}\right)_{\mid K^{c}}<\ell$.

We note that that there is no $x \in[0,3 R] \times[0, R]$ such that $\widetilde{f}_{r}(x) \in[\ell, \ell+\delta]$ and $\nabla_{x}^{s} \widetilde{f}_{r}=0$, and we apply a result from stratified Morse theory to \widetilde{f}_{r} as follows: By [4, Proposition in Section 3.2 of Part I], there exists a homeomorphism φ from $K=\left\{\widetilde{f}_{r} \geq \ell\right\} \cap([0,3 R] \times[0, R])$ to $L:=\left\{\widetilde{f}_{r} \geq \ell+\delta\right\} \cap([0,3 R] \times[0, R])$ such that both φ and φ^{-1} send a point of B_{R} (resp. T_{R}) on a point of B_{R} (resp. T_{R}). The existence of a homeomorphism between K and L implies that the number of connected components of L is the same as the number of connected components of K. Since every connected component of L is included in a connected component of K, we obtain that every connected component of K contains a component of L. Moreover, the property of φ implies that every component of L contains a path from B_{R} to T_{R}. This concludes the proof of the desired result for \widetilde{f}_{r}, which implies the desired result for f_{r}.

Let us now tile the rectangle $[0,3 R] \times[0, R]$ with $\asymp R^{2}$ unit squares S_{i} and let us note that, for every $h>0$, there exists $C_{h}>0$ that depends only on h and q such that

$$
\begin{equation*}
\forall i, \quad \mathbb{P}\left[\exists x \in S_{i}, \nabla_{x}^{s} f_{r}=0 \text { and } f_{r}(x) \in[\ell, \ell+\delta]\right] \leq C_{h} \delta^{1-h} . \tag{3}
\end{equation*}
$$

This is for instance written at the end of the proof of [5, Lemma 7] (applied to $m=2$, $\beta=1, \tau=\delta$ and $t=h / 3$ - let us note that the fact that the constant C_{h} above - of which the reader can find an expression in [5] - is uniform in r is a consequence of classical Gaussian estimates such as Dudley's theorem and the BTIS inequality, both applied to the Gaussian field $\left(f_{r}(x), \nabla_{x}^{s} f_{r},\left(\nabla^{s}\right)_{x}^{2} f_{r}\right)_{x \in S_{i}}$, see [1, 2]).

Let us end the proof by using (3) as well as the RSW theorem - [3, Theorem 2.4] (the use of the RSW theorem here is the only reason why Lemma 3 and Proposition 1 are stated for levels $\ell \geq 0$). By the RSW theorem and the independence between sets at distance greater than r, there exists a constant $c>0$ that depends only on ε such that, if $\gamma<1-\varepsilon$ and $r \in\left[r_{q}, R^{\gamma}\right]$, we have
(4) $\forall i, \mathbb{P}\left[\exists\right.$ a cont. path in $\left\{f_{r} \geq \ell\right\}$ from S_{i}^{r} to T_{R} and such a path from S_{i}^{r} to $\left.B_{R}\right]$

$$
\leq R^{-c}
$$

where S_{i}^{r} is the set of all points in \mathbb{R}^{2} at distance less than r from S_{i}.
Let $\delta=R^{-2+\theta}$ as in the statement of the lemma. By using (3), (4) and the independence between sets at distance greater than r, we have

$$
\forall i, \quad \mathbb{P}\left[\exists x \in S_{i} \text { as in Claim 1] } \leq C_{h} \delta^{1-h} R^{-c}=C_{h} R^{(-2+\theta)(1-h)-c} .\right.
$$

Choosing for instance $h=\theta=c / 1000$ and summing over i imply the desired result.
Acknowledgment. We warmly thank David Vernotte for pointing out the error to us and Damien Gayet for indicating ref. [4].

REFERENCES

[1] Adler, R. J. and Taylor, J. E. (2007). Random Fields and Geometry. Springer.
[2] Azaïs, J.-M. and Wschebor, M. (2009). Level sets and extrema of random processes and fields. John Wiley \& Sons.
[3] Duminil-Copin, H., Rivera, A., Rodriguez, P.-F. and Vanneuville, H. (2023). Existence of an unbounded nodal hypersurface for smooth Gaussian fields in dimension $d \geq 3$. The Annals of Probability 51228 - 276. https://doi.org/10.1214/22-AOP1594
[4] Goresky, M. and MacPherson, R. (1988). Stratified Morse theory. Springer.
[5] Nazarov, F. and Sodin, M. (2016). Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions. Journal of Mathematical Physics, Analysis, Geometry 12 205-278.

