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This note is an erratum to the paper “Existence of an unbounded nodal
hypersurface for smooth Gaussian fields in dimension d ≥ 3” (Annals of
Probability 51(1): 228–276 (January 2023). DOI: 10.1214/22-AOP1594).
The published version of this paper contains one error: Proposition 1.12
therein is stated with a sprinkling R−2+θ0 for some (small) θ0 > 0, which
we cannot afford in Section 5, where this result is applied at mesoscopic
scales. We circumvent this issue by proving a stronger version of this propo-
sition, interesting in its own right, which contains no sprinkling. We thus ob-
tain that, for a general class of positively correlated smooth Gaussian fields
f : R3→ R with rapid decay of correlations (including the Bargmann–Fock
field), large planar clusters in {f ≥ 0}∩ (R2×{0}) typically belong to clus-
ters in {f ≥ 0} which are not confined in thin slabs.

The published version of the manuscript [3] contains one error: Proposition 1.12 therein
is stated with a sprinkling R−2+θ0 for some (small) θ0 > 0, which we cannot afford in [3,
Section 5], where this result is applied at mesoscopic scales. The issue can be circumvented
by proving the following stronger version of [3, Proposition 1.12], interesting in its own right,
which contains no sprinkling. We use the same notations as in [3].

PROPOSITION 1. Let d≥ 3 and let q satisfy Assumption 1.4 for some β > d. There exist
a, γ, c,R0 > 0 such that for every R≥R0, r ∈ [rq,R

γ ] and `≥ 0,

P

[ Every continuous path in {fr ≥ `} ∩D(2R)
from D(R) to ∂D(2R) belongs to a connected component

of {fr ≥ `} ∩ (D(2R)× [0,Ra]) that intersects PRa

]
≥ 1− exp(−Rc).

As a consequence of this improvement over [3, Proposition 1.12], the arguments in [3, Sec-
tions 5,6 and 8] can be somewhat streamlined (although they remain correct as they presently
are), by removing this sprinkling. In particular, this entails replacing the level “2R−3/2” by
“R−3/2” in various places, including in the statement of [3, Proposition 5.1], as well as in
[3, Definition 7.2, i) and ii)] and [3, Definition 8.2,i)]. Correspondingly, the sprinkling can be
removed from the whole discussion in [3, Section 1.3]. In particular, we obtain the following
uniqueness property, which improves over [3, (4)] (cf. also [3, Proposition 5.1]):

With high probability, for large R, any two components of
of {f ≥ 0} ∩ [0,R]2 with diameter ≥R/100

are connected by a path in {f ≥ 0} ∩ ([0,R]2 × [0,Ra]).

We now explain how to prove Proposition 1 by modifying the proof of [3, Proposition
1.12]. This proof appears in [3, Section 3] and follows by combining three results, Lemmas
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3.2, 3.3 and 3.4. Of these, Lemmas 3.2 and 3.4 remain unchanged. Lemma 3.3 is replaced
by the following result. Below the events E`(R) refer to those declared in [3, Definition 3.1]
(the events E`,`′(R) won’t be needed anymore).

LEMMA 2. There exists η > 0 that depends only on the dimension d such that we have
the following as soon as γ, a and 1− b are less than η: There exist c,R0 > 0 such that for
every `≥ 0, R≥R0 and r ∈ [rq,R

γ ], there exists `′ ∈R such that

P [fr ∈E`(R)]≤min
α∈A

P [fr ∈Eα`′(R)] +R−c.

In fact, we prove this result with `′ ∈ [`, `+CR−c] for some C,c > 0. We give the proof of
Lemma 2 separately below and first conclude the proof of Proposition 1 admitting Lemma 2
and combining with [3, Lemma 3.2+3.4].

PROOF OF PROPOSITION 1. Let us start by observing that Lemma 2 and [3, Lemma 3.4]
(applied to the level `′ from Lemma 2) and Item 1 of [3, Lemma 3.2] imply that there exist
γ,a, ε, c,R0 > 0 such that, for every R≥R0, r ∈ [rq,R

γ ] and `≥ 0,

(1) P
[
fr ∈E`(R1−ε)

]
≤R−c.

We now implement a fairly classical renormalization argument. Introduce the event E`(R,τ)
as E`(R) except that the height is τ instead of Ra. Let

p(r, τ,R) = P[fr ∈E`(R,τ)].

We now claim that there exists C > 0 such that for every L≥Rγ ,

p(r, τ,7L)≤ (Cp(r, τ,L))2.

To see this, one can proceed as follows: First, due to independence at distance L, one bounds
p(r, τ,7L) by the square of the analogous quantity for a (21L × 3L)-rectangle. Now, one
covers each (21L× 3L)-rectangle using 40 + 21 (3L× L) rectangles and observes that at
least one is crossed in the easy direction with a crossing that does not go up to height τ , thus
implying the above with C = 40+ 21.

By iterating this argument, we obtain that

p(r, τ,7kL)≤C2+22+···+2k

p(r, τ,L)2
k ≤ (C2p(r, τ,L))2

k

.

We now fix τ = Ra(1−ε) and L= R1−ε. Also, we choose k so that 1
7R

ε < 7k ≤ Rε and set
R= 7kR1−ε ∈ [R/7,R]. Using (1), we may find R1, c

′ > 0 such that for R≥R1,

p(r,Ra(1−ε),R)≤ (C2R−c)2
k ≤ exp(−Rc′).

It only remains to observe that for the event in the statement of Proposition 1 to occur (with
2R instead of R), there must be one out of O(1) rectangles of size 3R×R that are crossed
by a path which is not in a connected component connected to the top. The claim therefore
follows by a union bound.

It remains to give the proof of Lemma 2. We make frequent reference to [3, Section 3.3].
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Proof of Lemma 2. The beginning of the proof is the same as the beginning of [3, Sec-
tion 3.3] until “...(to prove this, compute the covariance of these Gaussian fields and use the
change of variables u=Gα(y)).” see the sentence below the display following [3, (7)]. Then
the proof continues as follows.

Hence, in order to prove the lemma, it is sufficient to prove that (for γ, a and 1− b suf-
ficiently small) there exist c,R0 > 0 such that for any R ≥R0 and r ∈ [rq,R

γ ], there exists
`′ ∈R such that

(2) P[fr ∈E`(R)]≤min
α∈A

P[hαr ∈E`′(R)] +R−c.

Let us now introduce some stability events for percolation clusters, that will enable us to
overcome the fact that stability results such as [3, Lemma B.2] cannot be applied to E`(R)
(because this event is not a union/intersection of a small number of monotonic events).

If ` < `′ are two levels, we let Stab`,`′(R) denote the event defined as follows (note that
this event only depends on the function restricted to the rectangle [0,3R] × [0,R] ⊂ R2 =
R2×{0}d−2): a function u ∈C(Rd) belongs to Stab`,`′(R) if every connected component of
{u≥ `} ∩ ([0,3R]× [0,R]) that contains a continuous path from [0,3R]× {0} to [0,3R]×
{R} also contains such a path γ with the further property that u|γ ≥ `′.

Let us now make the following observation: For every δ > 0 and every u, v ∈ C(Rd), at
least one of the following properties does not hold:

• u ∈E`(R);
• u ∈ Stab`,`+2δ(R);
• ‖u− v‖∞,[0,3R]×Q×{0}d−3 ≤ δ;
• v /∈E`+δ(R).

As a result, for every δ > 0 we have

P[fr ∈E`(R)]≤min
α∈A

P[hαr ∈E`+δ(R)]

+max
α∈A

P
[
‖fr − hαr ‖∞,[0,3R]×Q×{0}d−3 ≥ δ

]
+ P
[
fr /∈ Stab`,`+2δ(R)

]
.

We thus obtain that Lemma 2 is a consequence of the following two lemmas:

LEMMA 3. Fix some ε ∈ (0,1). There exists a constant θ > 0 that depends only on ε
such that the following holds as soon as γ < 1− ε: There exists R0 > 0 such that for every
`≥ 0, R≥R0 and r ∈ [rq,Rγ ],

P
[
fr /∈ Stab`,`+δ(R)

]
≤R−θ,

where δ :=R−2+θ .

LEMMA 4. For every θ > 0, there exists η > 0 (that depends only on θ and on the dimen-
sion d) such that the following holds as soon as γ, a and 1− b are less than η: There exist
c,R0 > 0 such that for every R≥R0 and r ∈ [rq,Rγ ],

max
α∈A

P
[
‖fr − hαr ‖∞,[0,3R]×Q×{0}d−3 ≥R−2+θ

]
≤ exp(−Rc).

Although not stated as such, Lemma 4 is proved in [3, Section 3.3]: see [3, (8)] (in partic-
ular, the proof uses [3, Claim 3.7], which remains valid).
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PROOF OF LEMMA 3. In this proof, we use the notion of stratified gradient of some func-
tion u ∈ C2(R2) with respect to the rectangle [0,3R]× [0,R]. The stratified gradient ∇sxu
is defined as the usual (2-dimensional) gradient if x does not belong to the boundary of the
rectangle; it is defined as the one-dimensional gradient ∇x(u|L) if x belongs to some side L
of the rectangle excluding corners, and ∇sxu := 0 if x is a corner of the rectangle.

Let δ > 0.

CLAIM 1. Assume that fr /∈ Stab`,`+δ(R). Then, there exist a connected component C
of {fr ≥ `} ∩ ([0,3R]× [0,R]) and a point x ∈C such that:

• C contains a continuous path from BR := [0,3R]× {0} to TR := [0,3R]× {R};
• fr(x) ∈ [`, `+ δ] and ∇sxfr = 0.

PROOF. Let K denote the union of all connected components of {fr ≥ `} ∩ ([0,3R] ×
[0,R]) that contain a continuous path from TR to BR. Our aim is to prove the following
claim: Assume that there is no x ∈ K such that ∇sxfr = 0 and fr(x) ∈ [`, ` + δ]. Then,
every connected component of K contains a continuous path γ from TR to BR such that
fr|γ ≥ `+ δ.

Let us prove this claim. To this purpose, let Kε (resp. Kε) denote the open (resp. closed)
ε-neighborhood of K . We fix some ε > 0 such that (fr)|K2ε\K < ` and, by using smooth
Urysohn’s lemma (applied to the compact set (K2ε)c included in the open set (Kε

)c, both
seen as subsets of [0,3R]× [0,R]), we construct a function f̃r ∈C2(R2) such that

• (f̃r)|Kε = (fr)|Kε and
• (f̃r)|Kc < `.

We note that that there is no x ∈ [0,3R]× [0,R] such that f̃r(x) ∈ [`, `+δ] and∇sxf̃r = 0, and
we apply a result from stratified Morse theory to f̃r as follows: By [4, Proposition in Section
3.2 of Part I], there exists a homeomorphism ϕ from K = {f̃r ≥ `} ∩ ([0,3R] × [0,R])

to L := {f̃r ≥ ` + δ} ∩ ([0,3R] × [0,R]) such that both ϕ and ϕ−1 send a point of BR
(resp. TR) on a point of BR (resp. TR). The existence of a homeomorphism between K
and L implies that the number of connected components of L is the same as the number
of connected components of K . Since every connected component of L is included in a
connected component of K , we obtain that every connected component of K contains a
component of L. Moreover, the property of ϕ implies that every component of L contains a
path from BR to TR. This concludes the proof of the desired result for f̃r , which implies the
desired result for fr .

Let us now tile the rectangle [0,3R] × [0,R] with � R2 unit squares Si and let us note
that, for every h > 0, there exists Ch > 0 that depends only on h and q such that

(3) ∀i, P[∃x ∈ Si,∇sxfr = 0 and fr(x) ∈ [`, `+ δ]
]
≤Chδ1−h.

This is for instance written at the end of the proof of [5, Lemma 7] (applied to m = 2,
β = 1, τ = δ and t= h/3 – let us note that the fact that the constant Ch above – of which the
reader can find an expression in [5] – is uniform in r is a consequence of classical Gaussian
estimates such as Dudley’s theorem and the BTIS inequality, both applied to the Gaussian
field (fr(x),∇sxfr, (∇s)2xfr)x∈Si

, see [1, 2]).
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Let us end the proof by using (3) as well as the RSW theorem – [3, Theorem 2.4] (the use
of the RSW theorem here is the only reason why Lemma 3 and Proposition 1 are stated for
levels ` ≥ 0). By the RSW theorem and the independence between sets at distance greater
than r, there exists a constant c > 0 that depends only on ε such that, if γ < 1 − ε and
r ∈ [rq,Rγ ], we have

(4) ∀i, P
[
∃ a cont. path in {fr ≥ `} from Sri to TR and such a path from Sri to BR

]
≤R−c,

where Sri is the set of all points in R2 at distance less than r from Si.

Let δ =R−2+θ as in the statement of the lemma. By using (3), (4) and the independence
between sets at distance greater than r, we have

∀i, P
[
∃x ∈ Si as in Claim 1

]
≤Chδ1−hR−c =ChR

(−2+θ)(1−h)−c.

Choosing for instance h= θ = c/1000 and summing over i imply the desired result.
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