Page web professionnelle d'Hugo Vanneuville

Click here for the English version.

Introduction :

Bonjour ! Je m'appelle Hugo Vanneuville, je suis chercheur en maths. Depuis janvier 2021, je suis chargé de recherche au CNRS, affecté à l'Institut Fourier (Université Grenoble Alpes), dans le thème probabilités. Avant cela, j'ai préparé ma thèse à l'Institut Camille Jordan (Université Lyon 1) sous la direction de Christophe Garban et j'ai été post-doctorant au département de maths de l'ETH Zürich sous la direction de Vincent Tassion.

Mes recherches portent principalement sur les phénomènes de transition de phase et de sensibilité au bruit dans des modèles de percolation. Plus d'informations ci-dessous.

Trois choses avant les maths :

  • Bon on fait quelque chose par rapport à Notilus ? Alors que j'écris ces lignes (un jour en 2024), j'ai passé 4 heures (!!) à faire des demandes de réservation de transport, simplement pour une mission en France. Et je viens d'apprendre que je dois tout recommencer car tout est remis à zéro si ça n'a pas été validé par suffisamment de personnes en un temps record. Je n'imagine même pas l'enfer que ça fait vivre aux gestionnaires des labos, quotidiennement.

  • Je n'écris plus de rapport pour les journaux publiés par Springer ou Elsevier depuis quelques années : il n'y a aucune raison que des éditeurs commerciaux réalisent des profits démesurés grâce à des travaux donnés gratuitement par des chercheurs et chercheuses, et fassent payer à nos bibliothèques des prix exorbitants.

  • Avec quelques collègues de Lyon et Grenoble, nous avons lancé un manifeste pour la limitation de l'avion dans les laboratoires de maths, déjà signé par plus de 600 collègues de laboratoires de maths en France, et qui a obtenu le soutien de la Société Mathématique de France (SMF), la Société de Mathématiques Appliquées et Industrielles (SMAI) et la Société Française de Statistique (SFdS). De tels changements de pratique sont aussi l’occasion enthousiasmante de réfléchir à de nouvelles formes de rencontres scientifiques !
  • Organisation d'évènements :

    Séminaires/Groupes de lecture :

  • Séminaire inter-thèmes de l'Institut Fourier. Co-organisation avec Gérard Besson et Ana Rechtman. Une fois par trimestre environ, nous nous retrouvons autour d'un mot et trois collègues travaillant sur des thèmes différents nous proposent un exposé accessible.
  • Séminaire de probabilités de l'Institut Fourier (programme depuis l'automne 2021).
  • Groupe de lecture à Zürich sur les lignes nodales aléatoires, automne 2019.
  • Conférences :

  • Co-organisation de la conférence Stochastic Geometry Days 2025 qui aura lieu du 23 au 27 juin à Grenoble. Plus d'informations très bientôt.
  • Je suis dans le comité scientifique de la conférence Climathiques qui aura lieu du 13 au 17 janvier 2025 au CIRM : "Une semaine à destination des mathématicien.nes désirant s’approprier les enjeux écologiques".
  • PPPP 2023 : Superconcentration et chaos, l'exemple de la percolation de premier passage, du mercredi 31 mai au vendredi 2 juin 2023 à l'Institut Fourier.
  • Journée de probabilités Lyon-Grenoble-Genève, le jeudi 17 novembre 2022 à l'Institut Fourier.
  • Thèmes de recherche :

    J'étudie des phénomènes de transition de phase et de sensibilité au bruit, ainsi que des propriétés d'universalité, tout cela dans des modèles de percolation (en 2D dans la majorité de mes travaux). En théorie de la percolation, on s'intéresse aux propriétés de connectivité d'ensembles aléatoires (par exemple un ensemble aléatoire d'arêtes d'un réseau ou les lignes de niveaux d'une fonction aléatoire). Lorsque la densité de l'ensemble aléatoire atteint une valeur critique, des structures fractales apparaissent, signes de l'émergence d'interactions à chaque échelle.

    De façon plus spécifique, voici - entre autres - trois questions guidant ma recherche :
  • Peut-on trouver de nouvelles façons de formaliser le fait qu'un phénomène de seuil apparaît si l'événement considéré "dépend peu de chacune des coordonnées" ?
  • Comment démontrer des propriétés de sensibilité au bruit sans utiliser d'outil spectral ?
  • Peut-on prouver des propriétés d'universalité en utilisant la sensibilité au bruit ?

  • (Voir aussi ici pour une interview faite par l'INSMI lors de mon recrutement, dans laquelle je décris notamment mon domaine de recherche.)

    Photo
    Figures : Percolation sur un pavage aléatoire : chaque case est coloriée en noir avec probabilité p=0.4, 0.5 et 0.6 respectivement. En rouge : les points reliés au bord gauche par un chemin noir. Une transition se produit au paramètre p=0.5.
    Articles de recherche :

    Sur la transition de phase de la percolation de Bernoulli :

  • Exponential decay of the volume for Bernoulli percolation: a proof via stochastic comparison     (Annales Henri Lebesgue, à paraître)
  • Nouvelles méthodes pour la sensibilité au bruit :

  • Noise sensitivity of percolation via differential inequalities     avec Vincent Tassion   (Proceedings of the London Mathematical Society, 2023)
  • Lignes nodales aléatoires :

  • Existence of an unbounded nodal hypersurface for smooth Gaussian fields in dimension d >= 3     avec Hugo Duminil-Copin, Alejandro Rivera et Pierre-François Rodriguez   (Annals of Probability, 2023 ; la version publiée contient une erreur, cf l'erratum. Cette erreur a été corrigée dans la version postée sur arXiv.)
  • The phase transition for planar Gaussian percolation models without FKG     avec Stephen Muirhead et Alejandro Rivera, et un appendice par Laurin Köhler-Schindler   (Annals of Probability, 2023)
  • Bargmann-Fock percolation is noise sensitive     avec Christophe Garban   (Electronic Journal of Probability, 2020)
  • The sharp phase transition for level set percolation of smooth planar Gaussian fields     avec Stephen Muirhead   (Annales de l'Institut Henri Poincaré, prob. et stat., 2020)
  • The critical threshold for Bargmann-Fock percolation     avec Alejandro Rivera   (Annales Henri Lebesgue, 2020)
  • Quasi-independence for nodal lines     avec Alejandro Rivera   (Annales de l'Institut Henri Poincaré, prob. et stat., 2019)
  • Percolation de Voronoi, sensibilité au bruit et dynamiques :

  • The annealed spectral sample of Voronoi percolation     (Annals of Probability, 2021)
  • Quantitative quenched Voronoi percolation and applications     (Annales de l'Institut Fourier, à paraître)
  • Annealed scaling relations for Voronoi percolation     (Electronic Journal of Probability, 2019)
  • Exceptional times for percolation under exclusion dynamics     avec Christophe Garban   (Annales scientifiques de l'École Normale Supérieure, 2019)
  • Autres écrits (non destinés à être publiés) :

  • Sharpness of Bernoulli percolation via couplings
  • Overview and concentration results for nodal lines     (texte d'introduction pour le groupe de travail sur les lignes nodales aléatoires organisé à Zürich en 2019)
  • Percolation dans le plan : dynamiques, pavages aléatoires et lignes nodales     (thèse de doctorat sous la direction de Christophe Garban)     Slides   Petit erratum
  • Liste de mes co-auteurs :

    Hugo Duminil-Copin, Christophe Garban, Laurin Köhler-Schindler, Stephen Muirhead, Alejandro Rivera, Pierre-François Rodriguez, Vincent Tassion

    Enseignement :

    J'ai enseigné à l'Université Lyon 1 pendant ma thèse. À l'Université Grenoble Alpes, j'ai enseigné le cours de M2 "Random models on lattices" avec Loren Coquille pendant le premier semestre de l'année 2023-2024. Vous pouvez trouver le résumé du cours ici. Pendant le second semestre des années 2021-2022, 2022-2023 et 2023-2024, j'ai enseigné avec Agnès Coquio le cours de M1 "Processus de Markov".

    Vidéos à Percolation Today :

  • Sharpness of Bernoulli percolation via couplings
  • Existence of an unbounded nodal surface for 3D smooth Gaussian fields
  • Noise sensitivity of percolation via differential inequalities (avec Vincent Tassion)
  • The phase transition for planar Gaussian percolation without FKG (avec Stephen Muirhead)
  • Un contre-exemple ?

    Munissons l'hypercube {0,1}^n des lois de probabilités produits de paramètre p, qu'on note P_p. Soit A un sous-ensemble croissant de {0,1}^n. D'après les travaux de Russo, BKKKL et Talagrand, si max_{i,p} P_p [modifier la i^ème coordonnée change 1_A] est petit, alors A satisfait un effet de seuil dans le sens qu'il existe un petit intervalle J tel que P_p[A] est proche de 0 ou 1 dès que p n'est pas dans J. Ma question est la suivante : soit q tel que P_q[A]=1/2. Est-ce que cela est encore vrai si on suppose seulement que max_i P_q [modifier la i^ème coordonnée change 1_A] est petit ?

    Diffusion :

    J'ai fait un exposé lors du "Barcamp" organisé par les bibliothécaires de Lyon 1 en mai 2018. Vous pouvez trouver la vidéo ici.